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Network (the other 2 had set up their Twitter too recently) and 10 disinformation
websites with similar number of followers.

We gathered 1 year of data (November 2020/October 2021) about the content they
posted and all the engagement it received (likes, retweets, replies) for a total of ~1.5
million tweets.

Goals of the analysis and Data Collection
The goal of the project was to analyse the outreach of the content posted on Twitter
by the recognized Italian fact checkers and compare it with important disinformation
outlets.
We selected 5 of the 7 fact checkers recognized by the International Fact-Checking

We will now show similarities and differences we found between the two groups.




Active vs passive audience

We compared for the two

groups the size of the passive
audience (followers) and the
active audience (retweeters)

We see that for the same
number of followers, the
disinformators have a
significantly higher number of
users that share their content
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User-content networks

To study the network structure of the
communication on twitter we built
bipartite networks where nodes are one
one side the tweets of the factcheckers and
disinfluencers and on the other are the
users that interact with them.

Edges represent interactions like replies
and/or retweets
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Distribution of retweet per user

10° e butacit . e atlanticomag Lantidiplomatic
PagellaPalitica nonkenforme Imalalogai
» Factalews 10° « DawveroTv 10 SCENarieconomic
« Bufalenet e affari_politici byoblu
X » lavoceinfo & \MisioneTv RadioRadicWeb
= 10 =
g finji Z
c c 1 c 2
g 3 5 10
=4 g E
E E g
=
1
10 100
10t
L]
L
10 . * T S cmcnuu.lzmu - 0 100 o SONN S INNONS SeENE § B @ 100 P —————
10° 10t 10° 108 ul 1 z T
Degree . 0 Degree . v
g Degree

Number of retweets per user during the year follow a power-law for all 15 accounts. We see that
some disinfluencers have a very heavy tailed distribution (some users with extremely high amount
of retweets).

This is a well known phenomenon in social media, related to what is called “preferential
attachment” (popular tweets receive more exposure and thus even more engagement).




Degree-disassortativity in user-content networks

We measured the level of degree-
assortativity in the networks for each
account.

All these networks are degree-
disassortative, that is less active users
interact on average with more viral
tweets.

This is a sign of what we call a core-
periphery structure.
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and disinfluencers (below) 00 02 04 0 00 02 04 06 08 10

by emotion and polarity.
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Semantic and topic analysis

We ran topic modelling on the tweets in the top
10% by engagement in both datasets. Given the
timeframe of the study, the most common
topics are related to the COVID 19 pandemic.

Are also very frequent self-referential
expressions, while in the disinfo dataset
contains a lot more names of personal names
(e.g. ‘draghi’, ‘trump’, ‘biden’) of political figures
as well a common name designating categories
of people (e.g. ‘medici’, ‘migranti’, ‘polizia’). This
is not surprising since blame culture constitutes
a kernel of disinformation.
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